Логотип АлексКомп

Все, что обычному человеку нужно знать о компьютерном охлаждении

Все, что обычному человеку нужно знать о компьютерном охлаждении / Статьи / Алекс Комп в Павлограде

Любой проводник, по которому протекает электрический ток, выделяет тепло. Это приводит к тому, что все составляющие компьютера, по которым проходит ток (от процессора до соединительных проводов), нагреваются. И чем мощнее компьютер, тем больше электричества он «съедает» — следовательно, неизбежен рост тепловыделения. Несмотря на применение изощренных технологических процессов при производстве чипов, их потребляемая мощность все равно растет, увеличивая количество тепла.

При избытке тепла компьютер в лучшем случае начнет тормозить и зависать, а в худшем — один или несколько компонентов выйдут из строя. Высокие температуры очень вредны для «здоровья» элементной базы (микросхем, конденсаторов и пр.), особенно для жесткого диска, перегрев которого чреват потерей данных.

И от тепловыделения, увы, никуда не деться, но ведь эта проблема имеет немало решений. Другой вопрос — чем охлаждать. На данный момент существует достаточно много систем охлаждения, все они используют общий принцип действия — перенос тепла от более горячего тела (охлаждаемого объекта) к менее горячему (системе охлаждения). Мы рассмотрим только следующие системы:

  • Радиатор
  • Кулер
  • Радиаторы и кулеры с термотрубками

Можно использовать различные виды перечисленных систем, но это уже выходит за рамки данной статьи.

Также мы расскажем о термоинтерфейсах: термопаре, терморезине, жидких металлах и расскажем о компоновке систем охлаждения в стационарных компьютерах и ноутбуках.

Радиаторы

Радиатор

Радиатор является воздушной системой охлаждения, т.е. хладагентом в его случае является холодный воздух из окружения. Тепло от охлаждаемого объекта идет к основанию радиатора, потом равномерно распределяется по всем его рёбрам, а уже после этого оно уходит в окружающий воздух.

Такой процесс называется теплопроводностью. Воздух вокруг радиатора постепенно нагревается, из-за чего процесс теплообмена становится все менее эффективным. Эффективность теплообмена между чипом и воздухом можно увеличить, если постоянно подавать холодный воздух к рёбрам радиатора. Говоря проще, для эффективного охлаждения нужна свободная циркуляция холодного воздуха.

Eсли радиатор сделан из высоко теплопроводного материала, то температура в любой его точке будет одинакова. Выделение тепла будет одинаково эффективно со всей площади поверхности. Т.к. объект отдаёт тепло со своей поверхности, то это значит, что для достижения наилучшего отвода тепла, площадь поверхности охлаждаемого объекта должна быть максимальной. Существует два способа увеличения площади радиатора — увеличение площади рёбер с сохранением размеров радиатора и увеличение геометрических размеров радиатора. Второй вариант, понятно, предпочтительней, но это вносит ряд неудобств — например, увеличивает вес и размеры радиатора, что может затруднить монтаж устройства. Ну и цена, соответственно, растет пропорционально количеству израсходованного на изготовления материала.

Кулеры

Кулер — это совокупность радиатора и вентилятора, устанавливаемого на электронные компоненты компьютера с повышенным тепловыделением. Самая главная задача устройства — снижение температуры охлаждаемого объекта и поддержание ее на определенном уровне. Достигается это за счет непрерывного потока воздуха, обдувающего радиатор. То есть менее эффективный процесс излучения превращается в более эффективный — конвекцию. кулеры — это самый простой, самый быстрый, доступный и, в большинстве случаев, достаточный способ охлаждения компонентов компьютера — воздухом охлаждается все.

Вариантов исполнения существует гигантское множество. Если говорить про внешний вид можно долго, то касательно функциональных отличий много не расскажешь.

Самой важной частью любого кулера является его вентилятор. Именно он шумит у Вас в Вашем системном блоке. А если быть более точным, то шум этот появляется при столкновении воздушного потока с радиатором. Особенно этот шум ощутим на дешевых моделях кулеров, т.к. над их дизайном никто не работает.

Вентилятор состоит из крыльчатки (в ней по внутреннему диаметру расположен магнит) и электромотора, который этот магнит вместе с крыльчаткой вращает. Через центр вентилятора идет осевой штырь, который размещается в центре мотора. Для большей плавности хода крыльчатки могут использоваться три вида подшипников (срок службы которых производители указывают в тысячах часов на упаковке):

  • Подшипник скольжения (sleeve bearing) — наиболее дешевый и наименее надежный вариант, создающий при работе высокий уровень шума.
  • 1 подшипник скольжения (sleeve bearing) + 1 подшипник качения (ball bearing) — комбинированный подшипник — более долговечная конструкция, работающая в среднем в два раза дольше, чем на подшипнике скольжения.
  • 2 или 4 подшипника качения (ball bearing) — наиболее надежные варианты с низким уровнем шума, но стоят такие вентиляторы существенно дороже первых двух.
  • Игольчатые и NCB (нано/миллиметровые керамические) подшипники — устанавливаются в вентиляторы ограниченным числом производителей. Они отличаются низким уровнем шума, невысокой стоимостью и очень большим сроком службы.

Кстати, о сроке службы (сроке безотказной работы. Если срок службы указан в 40-50 тысяч часов (почти 5 лет. Хотя бывает и больше — до 300 000 часов!), это вовсе не значит, что вспомнить о кулере в следующий раз придется только через это время. Нет! Это число нужно делить на два-три, и все равно время от времени производить профилактические действия — протирать от пыли, продувать, смазывать. Если не ухаживать за кулером, он может начать шуметь, а если совсем про него забыть — то и остановиться.

Производительность вентилятора (расходная характеристика) — пожалуй, основная его характеристика. Измеряется она в количестве кубических футов воздуха, перегоняемых им в минуту, сокращенно — CFM (Cubic Feet per Minute). Эта характеристика главным образом зависит от площади вентилятора, профиля лопастей и скорости их вращения. Чем больше это значение, тем выше эффективность охлаждения и, как правило, тем выше уровень шума, создаваемый вентилятором при работе.

Перегонять кубометры воздуха кулер может своими лопастями на скорости до 8000 оборотов в минуту (для сравнения, двигатель обычнго легкового автомобиля выдает 5-8 тысяч оборотов. Двигатель болида «Формула-1» — до 22 000 оборотов). Но понятное дело, что при такой скорости шум от работы кулера будет ощутимым. Поэтому предпочтительнее брать кулеры с PWM — это технология управления оборотами вентилятора с помощью широтно-импульсной модуляции. Все вентиляторы, имеющие 4-проводное подключение, поддерживают эту регулировку по стандарту, вне зависимости от производителя.

Радиаторы и кулеры с термотрубками

В современных системах перестали быть редкостью применяемая в радиаторах и в кулерах — тепловые трубки или просто теплотрубки. Она представляет собой герметическое теплопередающее устройство, которое работает по замкнутому испарительно-конденсационному циклу в тепловом контакте с внешними — источником и стоком тепла.

Радиаторы и кулеры с термотрубками

Тепловая энергия берется на охлаждаемом объекте и затрачивается на испарение теплоносителя, который находится внутри корпуса тепловой трубки. Далее тепловая энергия переносится паром в виде скрытой теплоты испарения далее, на определенном расстоянии от места испарения, где при конденсации пара выделяется в сток.

Образовавшийся конденсат снова возвращается в место испарения — либо под действием капиллярных сил (которые обеспечиваются наличием специализированной капиллярной структуры внутри тепловой трубки), либо за счет действия массовых сил (такая конструкция обычно именуется термосифоном).

Радиаторы и кулеры с термотрубками

Получается, что вместо привычного электронного механизма переноса тепла (путем теплопроводности, что имеет место в сплошном металлическом теплопроводе), в теплотрубке используется молекулярный механизм переноса (точнее, процесс переноса кинетической и колебательной энергии беспорядочного движения частиц пара) за счет чего существенно повышается теплопередача.

Как расположить кулеры в системном блоке

Простой установкой дополнительных вентиляторов проблему не решить. Вeдь чем они многочисленнее, мощнее и «оборотистее», тем «звучнее» ПК. Причем мало того, что шумят двигатели и лопасти вентиляторов, — вследствие вибраций шумит весь системный блок (особенно часто это бывает при некачественной сборке и использовании дешевых корпусов). Для исправления такой ситуации рекомендуется применять низкооборотные вентиляторы большого диаметра.

Как расположить кулеры в системном блоке

Чтобы можно было добиться эффективного охлаждения, не используя шумные вентиляторы, системный блок должен иметь низкое сопротивление для воздуха, который через него проходит (на профессиональном языке это называется аэродинамическим сопротивлением). Говоря попросту — если воздух с трудом «пролезает» сквозь тесное пространство, забитое кабелями и компонентами, приходится ставить вентиляторы с большим избыточным давлением, а они неизбежно создают сильный шум. Другая проблема — пыль: чем больше воздуха надо прокачивать, тем чаще требуется очищать внутренность корпуса (об этом поговорим отдельно).

Впрочем, для минимизации шума вовсе не обязательно собирать ПК с воздушным охлаждением в морском контейнере или в холодильнике. Достаточно учесть рекомендации специалистов. Так, свободное сечение в любом разрезе корпуса должно быть в 2–5 раз больше проходного сечения вытяжных вентиляторов. Это также относится и к отверстиям для подачи воздуха.

Для того чтобы снизить аэродинамическое сопротивление, нужно:

  • обеспечить в корпусе достаточно свободного места для потоков воздуха (оно должно быть в несколько раз больше суммарного сечения вытяжных вентиляторов);
  • аккуратно уложить кабели внутри системного блока, используя стяжки;
  • в месте подачи воздуха в корпус установить фильтр, задерживающий пыль, но не оказывающий сильного сопротивления воздушному потоку;
  • фильтр следует регулярно чистить

Термоинтерфейс: термопаста, терморезина и жидкий метал

Как уже говорилось, составной частью любой охлаждающей системы (в том числе компьютерного кулера) является термоинтерфейс — компонент, через который осуществляется термоконтакт между тепловыделяющим и теплоотводящим устройствами. Выступающая в этой роли термопаста обеспечивает эффективный перенос тепла между, например, процессором и кулером.

Зачем нужна теплопроводящая паста

Зачем нужна теплопроводящая паста

Если радиатор кулера неплотно прилегает к охлаждаемому чипу, эффективность работы всей охлаждающей системы сразу снижается (воздух — хороший теплоизолятор). Сделать поверхность радиатора ровной и плоской (для идеального контакта с охлаждаемым устройством) весьма трудно, да и недешево. Здесь и приходит на помощь термопаста, заполняющая неровности на контактирующих поверхностях и тем самым значительно повышающая эффективность теплопереноса между ними.

Важно, чтобы вязкость термопасты была не слишком высокой: это необходимо для вытеснения воздуха из места термоконтакта при минимальном слое термопасты. Учтите, кстати, что полировка подошвы кулера до зеркального состояния сама по себе может и не улучшить теплообмен. Дело в том, что при ручной обработке практически нереально сделать поверхности строго параллельными, — в итоге зазор между радиатором и процессором может даже увеличиться.

Прежде чем наносить новую термопасту, старательно избавьтесь от старой. Для этого используются салфетки из нетканых материалов (они не должны оставлять волокон на поверхностях). Разводить пасту крайне нежелательно, так как это сильно ухудшает теплопроводящие свойства. Дадим еще несколько рекомендаций:

  • применяйте термопасты с теплопроводностью более 2–4 Вт/(К*м) и низкой вязкостью (в АлексКомп мы используем Arctic cooling MX-4);
  • устанавливая кулер, каждый раз наносите свежую термопасту;
  • при установке необходимо, зафиксировав кулер креплением, сильно (но не слишком, иначе возможны повреждения) прижать его рукой и несколько раз повернуть вокруг оси в пределах существующих люфтов. В любом случае монтаж требует навыка и аккуратности.

Терморезина

Термопрокладка используется в том случае, когда непосредственного контакта между двумя поверхностями нет или он не гарантирован. Ее задача — заполнить просвет и передать тепло от горячей к холодной поверхности эффективнее, чем толстый слой термопасты.

Терморезина

Для этого она делается упругой и сжимаемой, чтобы компенсировать разброс расстояний между поверхностями.

Использование термопрокладок в качестве термоинтерфейса для микросхем памяти и элементов подсистемы питания вместо термопасты вынужденная мера, обусловленная конструктивными особенностями.

Жидкий металл — высокоэффективный термоинтерфейс

Жидкий металл (вид термоинтерфейса) — особый вид термоинтерфейса, состоящий из металлов высокой текучести, не содержащий ртуть. Является самым эффективным на сегодняшний день термоинтерфейсом, который имеет самую высокую теплопроводность (более 80 Вт/мК). К примеру, одна из лучших термопаст Arctic Silver 5, имеет теплопроводность менее 9 Вт/мК. Одним из первых «жидкометаллических» термоинтерфейсов сталCoollaboratory Liquid Pro.

Жидкий металл имеет и свои минусы:

  • Несовместимость с алюминиевыми основаниями кулеров. При определённой влажности, у алюминиевого основания при взаимодействии с жидким металлом начинается коррозия.
  • Термоинтерфейс проводит электричество! Так что, нельзя допускать излишков, которые могут выпасть на электронные компоненты во время прижатия кулера к процессору. Попадание жидкого металла (даже один маленький шарик) на электронные компоненты может вывести их из строя.
  • Трудность удаления термоинтерфейса. Для удаления лучше использовать обычную салфетку, но она не убирает остатки жидкого металла полностью. Для полного удаления термоинтерфейса стоит использовать специальные средства очистки металла для автомобиля, либо специальный набор от производителя Coollaboratory Liquid Cleaning Set.

Существует также жидкий металл в твёрдом агрегатном состоянии (в виде коврика), называется Coollaboratory Liquid MetalPad.

Он имеет более выгодные и простые условия нанесения для простого потребителя.

Его нанесение гораздо проще. Достаточно вырезать металлический коврик в виде фольги, чуть меньше крышки процессора, либо по размеру чипа (при прямом прижиме) и прижать кулер.

Чтобы металл стал жидким, достаточно прогреть его в течении нескольких минут до 60 градусов или чуть больше. После этого термоинтерфейс готов.